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Annual Summary Report
I. Introductio n

Background : The nuclear factor KB (NF-KB) family of transcription factors regulate s
expression of genes critical for multiple biological processes, including immun e
responses, inflammatory reactions, cell proliferation, cell differentiation, and apoptosis .
Traditionally, activation of NF-KB involves an extracellular signal that disassociates th e
inhibitor protein IKBa from NF-KB, allowing its translocation to the nucleus . Recently,
NF-KB has been shown to be activated by DNA damaging agents which cause DN A
double-strand breaks (DSB) in several tumor cell lines, including breast cancer lines .
These DNA damaging agents are the same chemotherapeutic agents used in th e
treatment of breast cancer . NF-KB activation has been linked to both cell survival an d
cell death by inducing the expression of anti-apoptotic genes and apoptotic genes ,
depending on cell types and inducing agents . Surprisingly, studies in our laborator y
further demonstrated that there are many cancer cell lines that fail to activate NF -
KB by DSB-inducing agents, indicating that this activation pathway is not a universa l
phenotype of all cancer cell types . In addition, many normal human cell types fail t o
activate NF-KB by several DSB inducing agents . Thus, our studies suggest that NF-K B
activation by certain DSB-inducing agents may be an "acquired" phenotype of certai n
malignant cells .

Objective/hypothesis : The purpose of this proposal is to further understand the
mechanisms of NF-KB related G2/M cell cycle arrest . We believe NF-KB can be activate d
by DSB-inducing agents and that this activation leads to protection from apoptosis b y
initiating a cell cycle arrest, allowing more opportunity to repair damaged DNA an d
resistance to anti-cancer agents .

II. Body
(Submitted paper to Molecular Cancer Research )

Enhanced cancer cell survival by NF-KB-dependent p21 waft/ciP1 induction .

Shelly M.Wuerzberger-Davis' 3, Pei-Yun Chang e ' 3 , and Shigeki Miyamoto'' 3* .

'Cancer Biology Program, 2Molecular & Cellular Pharmacology, and 3Department o f

Pharmacology, University of Wisconsin-Madison 5370 6
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ABSTRACT

Nuclear factor kappaB (NF-KB) regulates cell survival pathways, but th e
molecular mechanisms involved are not fully understood . Here, we developed
an NF-KB-reporter T leukemic cell system to monitor the consequences of NF -
KB activation by DNA damage insults . Cells that had activated NF-KB followin g
treatment with ionizing radiation or etoposide arrested in the G 2/M phase fo r
prolonged time, which was followed by increased cell cycle re-entry. In contrast ,
those that had failed to activate NF-KB underwent transient G 2/M arrest and
extensive cell death . NF-KB-dependent induction of the cyclin-dependent kinase
inhibitor p2lwaf1/cipl in S-G 2/M phases contributed to the maintenance of this cel l
cycle arrest while RNA interference of p21 reduced the arrest . Thus, p21 waf1/cipl -

dependent G2/M arrest protects cells from apoptosis and represents an NF-KB-
dependent cancer resistance mechanism .

INTRODUCTION

The Rel/NF-KB family of transcription factors regulates expression of gene s
critical for multiple biological processes, including immune responses, inflammatory
reactions, and apoptosis (1, 2) . In particular, many recent studies underscor e
the importance of NF-KB in the induction of genes involved in resistance t o
chemotherapeutic agents and radiation therapy (reviewed in (3)) . These genes include
antiapoptotic Bcl-2 family members and the clAP family of caspase inhibitors, amon g
others (4-8) . However, the repertoire of NF-KB regulated genes that participate in cel l
survival regulation is incompletely understood .

Inactive NF-KB complexes exist in the cytoplasm in association with inhibitors ,
such as IKBa, and release from these inhibitors is critical for NF-KB to enter the nucleu s
and activate gene expression (1) . Many signaling cascades that control NF-K B
activation converge on an IKB kinase (IKK) complex that is responsible for releasin g
NF-KB . Phosphorylation of IKBa on serines 32 and 36 leads to its ubiquitination an d
subsequent degradation by the 26 S proteasome (9) . Because of the sequential natur e
of this signaling pathway, there are many steps in which the activation of N F-KB ca n
be inhibited . One method is to express a mutant form of IKBa (S32/36A-IKBa or s o
called super-repressor IKBa mutant) that harbors mutations at the IKK phosphorylatio n
sites and consequently is not targeted for the degradation pathway to liberate NF -
KB . Alternatively, while not as selective for the pathway as the above IKBa mutant ,
proteasome inhibitors have also been employed to prevent the NF-KB pathways (10 -
13) . Combined with knock-out studies of the NF-KB family and IKK components, thes e
"loss-of function" approaches were instrumental in determining the role of NF-KB a s
a key survival factor in both physiological and pathological settings (14-17) . These
approaches also helped to define NF-KB regulated genes whose expression was los t
upon inhibition of NF-KB activation, thus, correlating with its antiapoptotic activities .

However, the role of NF-KB in cell death regulation varies greatly dependin g
on the cellular contexts and the stress signals utilized (18, 19) . This disparity i s
presumably due to the differences in regulation of NF-KB target genes under differen t
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experimental settings . These discrepancies may, in part, stem from differences bot h
in the percentage of a cell population among drug-exposed cells that is capable of
activating NF-KB and the magnitude of activation within each stressed cell, both o f
which may vary greatly under different conditions. For example, when cells are treate d
with topoisomerase I inhibitors, such as camptothecin (CPT) and its derivatives, onl y
cells in the S-phase seem to activate NF-KB (20, 21) . Thus, any NF-KB-dependen t
effects will be initiated primarily from this cell population . Variations in the percentag e
of S-phase populations in drug-exposed cells will then introduce variations in NF-KB -
dependent phenotypes . In other conditions, such as anticancer DNA damaging agents ,
including ionizing radiation (IR) and the topoisomerase II inhibitor etoposide (VP16), i t
is unknown whether NF-KB activation is regulated in a cell cycle-dependent manner o r
other undefined cellular contexts . Without a means to trace live NF-KB-activated cel l
populations, it is difficult to examine the populational variation of NF-KB activation an d
the consequences within those NF-KB-activated cells . Thus, there is a need to develo p
a cell-based NF-KB reporter system to evaluate the behavior of these distinct cel l
populations to directly link NF-KB activation to specific cell survival gene regulation an d
phenotypes.

Tumors with a defective tumor suppressor p53 occur frequently in different types
of cancer and are generally more resistant to chemotherapy (22-25) . Cells in which
p53 is inactivated tend to have a selective growth advantage partly due to the lack o f
target genes normally controlled by p53 . These genes are involved in various cellular
activities, such as growth arrest, induction of apoptosis, inhibition of angiogenesis ,
among others (reviewed in (26)) . For example, following genotoxic stress challenges ,
p53 controls transcription of numerous proapoptotic members of the Bcl-2 family ,
such as Bax, Puma, Noxa, and Bid (reviewed in (22)) . P53 also regulates cell cycl e
arrest by transcriptional activation of p21 Waft'c1P1 a member of the Cip/Kip family o f
cyclin dependent kinase inhibitors that mediates the p53-induced G 1 growth arrest
(27, 28) . Due to loss of p21 wawc'P1 regulation, p53-deficient cells often display a lack o f
a G 1 cell cycle arrest following treatment with anticancer drugs (29-31) . Because of
the presence of other checkpoint mechanisms mediated by the activation of differen t
kinases depending on the type of DNA lesions, p53-deficient cells still possess cel l
cycle checkpoint mechanisms in other cell cycle phases (32-34) . However, mechanisti c
linkages between cancer resistance and NF-KB activation resulting from p53-deficienc y
are not well established .

To address cancer resistance mechanisms in relation to cell cycle regulation b y
NF-KB activation, we developed a "positive selection" strategy by engineering an NF-K B
reporter cell system using a p53-mutant CEM T leukemic cell line . This system revealed
a previously unrecognized G 2/M maintenance role for NF-KB through the induction o f
p21 W af 'P l . Additionally, p53-mutant breast cancer cells also induced p21 waft 'o1P1 in an
NF-KB dependent manner and arrested in G 2/M for prolonged time, leading to thei r
increased survival . Thus, the NF-KB- p2l wafl 'o1p1 -G2/M maintenance pathway elucidate d
here may be a contributor to the development of resistance in certain p53-defectiv e
human cancer types .

EXPERIMENTAL PROCEDURES
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Cell culture and Generation of CEMKB cells . CEM human T leukemi c
and MDA-MB-231 human breast cancer cell lines, along with their derivatives, were
maintained in RPMI 1640 medium (Mediatech ; Herndon, Virginia) supplemented wit h
10% fetal bovine serum (HyClone Laboratory, Inc ; Logan, Utah), 100 units of penicilli n
G and 100 µg/ml streptomycin sulfate (Mediatech ; Herndon, Virginia) . The 3xKB-GF P
reporter was constructed by removing the CMV promoter from the pEGFP-C1 plasmi d
(Clontech) and replacing it with the 3xKB-tk promoter from the 3xKB-LUC plasmid (20) .
The 3xKB-GFP was introduced into CEM by electroporation as described below an d
selected with 1 mg/ml G418 (Mediatech ; Herndon, Virginia) . Cells were stimulate d
with TNFa and those that expressed GFP were positively selected by FACS sorting a s
described below. These cells were then incubated in the absence of TNFa to ensure
that the GFP levels dropped to undetectable levels . This process was repeated tw o
more times to isolate a clone of CEMKB cells that possessed the capacity to responde d
to TNFa stimulation robustly . This process ensured the isolation of cell clone tha t
contained the 3xKB-GFP reporter gene stably integrated into a genomic location(s) tha t
efficiently responded to NF-KB stimulation . Expression of the super-repressor IKBa
showed the specificity of NF-KB-dependent GFP induction in the CEMKB clone (data no t
shown) .

Reagents and antibodies . A JL Shepherd Model JL-109 with a 137Cs source
was used for y-irradiation . Camptothecin (CPT), doxorubicin (Dox), etoposide (VP16) ,
and propidium iodide (PI) were purchased from Sigma (St . Louis, Missouri) . Human
recombinant TNFa was purchased from Calbiochem (La Jolla, California) . Actin (C-
11), IKBa (C-21), p21 (F-5), p21 (C-19) and p53 (DO-1) antibodies were purchase d
from Santa Cruz Biotechnology (Santa Cruz, California) . Anti-rabbit and anti-mous e
antibodies conjugated to horseradish peroxidase were obtained from Amersha m
Pharmacia Biotech (Piscataway, New Jersey) while anti-goat antibody conjugated t o
horseradish peroxidase was obtained from Santa Cruz Biotechnology .

Western immunoblot analysis, electrophoretic mobility shift assay (EMSA )
and immunoprecipitation . Cell preparation and Western blotting were performe d
as described (35) . The IgK-KB and Oct-1 probes and conditions for EMSA were a s
described (36) . To detect p21 Waft/cipl protein in CEMKB cells, 5 x 10 6 cells were lyse d
in 10% PBS and 90% lysis buffer as described previously (Huang 2002, MCB) .
Supernatants were diluted further in lysis buffer, and 1 pg of p21 antibody (C19, Sant a
Cruz) was added to each tube . Samples were rotated for 60 min at 4°C . Protein G -
Sepharose beads (Amersham Pharmacia Biotech ; Piscataway, New Jersey) were the n

added to each tube, and the samples were rotated overnight at 4°C . P21 Waft/cipl protein
was resolved in 12% SDS-PAGE gels and analyzed by Western blotting using the sam e
antibody.

FACS sorting, cell cycle analysis, and fluorescent microscopy . CEMKB
cells were exposed to 10 Gy of IR and allowed to repair for a total of six hours a t
37°C . "GFP-positive" CEMKB cells were sorted from "GFP-negative" cells using th e
FACSVantage cell sorter (BD Pharmingen ; San Jose, California) followed by immediat e
fixation in 70% ETOH . For cell cycle analysis, cells were processed as previousl y
described (37) and analyzed on a FACScan flow cytometer (BD Pharmingen ; San
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Jose, California) . Data were analyzed using the Cellquest (BD Pharmingen ; San Jose ,
California) and ModFit (Verity Software House ; Topsham, Maine) software . CEMKB
cells were visualized and photographed as described previously (38) .

RNase Protection Assays (RPA) . CEMKB and CEM-S32/36A cells wer e
irradiated at a dose of 20 Gy. Following a 5 .5 hour incubation, cells were labeled for 3 0
min. with Hoechst 33342 dye (Molecular Probes ; Eugene, Oregon) before sorting o n
the FacsVantage cell sorter. Cells in the G 1 phase of the cell cycle were sorted from th e
total of the population . Cells were collected at 4°C, washed in PBS, and immediatel y
froze at -70°C . Cells were homogenized using a Qiashredder column (Qiagen ;
Valencia, California) followed by RNA isolation using the RNeasy kit (Qiagen ; Valencia ,
California) . The RiboQuant RPA kit (BD Pharmingen ; San Jose, California) was use d
to perform ribonuclease protection assays on the isolated RNA by hybridizing it with th e
hStress-1 multi-probe template set (BD Pharmingen ; San Jose, California) as outlined i n
the manufacturer's directions .

Quantitative RT-PCR Analysis . Total RNA from CEM cells treated with 10µ M
VP16 for 6 hours was extracted using the RNeasy kit and Qiashredder (Qiagen ;
Valencia, California) . cDNA was synthesized as described (39) . Quantitative rea l
time RT-PCR reactions (25 NI) contained 2 pl of cDNA, 12 .5 NI of SYBR Gree n
(Applied Biosystems, Foster City, California), and the appropriate primers . Product
accumulation was monitored by SYBR Green fluorescence . The relative expressio n
levels were determined from a standard curve of serial dilutions of cDNA samples .
Forward and reverse primers for real time PCR were : (1) human p21 Waft/ciPl, 5 ' -
GCAGACCAGCATGACAGATTTC-3' and 5'-GCGGATTAGGGCTTCCTCTT-3' ; human
Bcl-xl, 5'-TGCCTAAGGCGGATTTGAAT-3' and 5'-ATTGTCCAAAACACCTGCTCACT -
3'; and GAPDH primers : 5'-GAAGGTCGGAGTCAACGGATTT-3' and 5' -
G AATTTG CCATG G GTG G AAT-3' .

Generation of stable p2lwafl ciP' pSilencer knockdown clones . P21 Waft/cipl RNA
interference stable CEM and MDA clones were generated using the pSilencer vecto r
(Ambion ; Austin, Texas) . A 19-nucleotide RNA interference sequence was chosen t o
knockdown p21 Wa "/cip 'that had no significant homology to any other gene in the huma n
genome . Two DNA oligos were designed for knocking down p21 Wart/ciPl following th e
manufacturer's protocal linking the 19-nucleotide sense and antisense sequences a s
follows: 5'- CTTCGACTTTGTCACCGAGTTCAAGAGACTCGGTGACAAAGTCGAAG T
1 1 1 1 1-3' (sense) and 5'-AATTAAAAAACTTCGACTTTGTCACCGAGTCTCTTGAAC T
CGGTGACAAAGTCGAAGGGCC-3' (antisense) . The scramble control was made a s
follows: 5'-TACCGTCTCCACTTGATCGTTCAAGAGACGATCAAGTGGAGACGGT A
1 1 1 1 1 1-3' (sense) and 5'- AATTAAAAAATACCGTCTCCACTTGATCGTCTCTTGAA C
GATCAAGTGGAGACGGTAGGCC-3'(antisense) . The oligos were annealed, and th e
resulting insert was ligated into the pSilencer vector that had been linearized with th e
restriction enzymes Apal and EcoRl . The resulting plasmid (40 µg) and a puromyci n
resistance vector pLPL-CA (4 µg) were cotransfected into both CEM and MDA cells b y
electroporation at a setting of 300 volts and 950 µF in a Bio-Rad Gene Pulser apparatu s
with capacitance extender . Stable clones were selected by 1 µg/ml puromycin an d
screened for their ability to knockdown p21 Waft/c1Pl protein expression by Western blotting .

8



RESULTS

. NF-KB activation by genotoxic agents in CEM cells . Prior to developing ou r
cell-based NF-KB reporter system, we determined the time course and dose-response
of NF-KB activation with CEM cells using distinct DNA damaging agents . Cells treated
with IR induced dose-dependent NF-KB activation that was saturated at approximatel y
10 Gy (Figure IA) and transient activation that peaked around 3-4 hours (Figure 1B) .
Supershift experiments showed that the NF-KB complexes were principally compose d
of p50 and p65 NF-KB subunits (not shown) . Consistent with previous studies (40 ,
41), this activation did not require de novo protein synthesis and was associated wit h
degradation of IKBa protein by 30 min, which was then followed by its resynthesi s
around 2 hours (Figure 1 B, others not shown) . Treatment with DNA topoisomerase I or
II inhibitors, such as CPT, topotecan (TPT), doxorubicin (Dox), and VP16, also resulte d
in increased NF-KB DNA binding activity (Figure 1 C) in a dose-dependent and simila r
transient activation manner (data not shown) . Increased transcription of an NF-KB-
dependent luciferase reporter gene (Figure 1 D) confirmed that NF-KB released by thes e
DNA damaging agents in CEM cells was transcriptionally competent .

NF-KB activation by certain DNA damaging agents occurs in differen t
cell cycle phases . To begin to monitor NF-KB functions at the single cell level, w e
developed CEMKB, a CEM cell-based NF-KB reporter assay, by stably integrating th e
3xKB-GFP reporter construct in a CEM leukemic T cell line . Multiple rounds of FAC S
sorting were used to isolate cell clones that displayed low basal GFP fluorescence wit h
high inducible GFP fluorescence following treatment with TNFa (Figures 2A, middl e
panel and 2B, upper panel, others not shown) . This process ensured the isolation of cell s
that had stably integrated the KB-GFP reporter at inducible genomic loci . To ensure that
the GFP(+) cells did indeed activate NF-KB and that the GFP(-) cells did not activat e
NF-KB, the two populations were analyzed for NF-KB activity by EMSA following TNF a
treatment . The GFP(+) cells displayed NF-KB binding activity following TNFa treatment
while GFP(-) cells displayed relatively little NF-KB binding activity (Figure 2C) . Specific
NF-KB-dependent induction of GFP was confirmed by its inhibition following expressio n
of the super-repressor IKBa mutant protein (not shown) . Interestingly, the total numbe r
of GFP(+) cells after treatment with CPT was much less than those treated with TNFa
(Figures 2A, lower panels and 2B, lower panels) . Moreover, cell sorting for "GFP(+) "
and " GFP(-)" populations followed by PI staining showed that the GFP(+) population s
following treatment with CPT were greatly enriched for only the S-phase cells, unlik e
TNFa-stimulated cells that showed GFP induction in different cell cycle phases (Figure
2D) . These results in live cells demonstrated that NF-KB activation by CPT was largel y
coupled to the S-phase, an observation consistent with previous biochemical studie s
(20, 21) .

Using this assay, we wanted to determine whether other DNA damaging agent s
activated NF-KB in specific phases of the cell cycle . In contrast to activation by CPT ,
which was efficiently prevented by the treatment with the DNA polymerase inhibito r
aphidicolin (Figure 2F, lane 4), NF-KB activation by none of the other DNA damaging
agents was sensitive to inhibition by this inhibitor. Thus, S-phase progression was no t
necessary to cause NF-KB activation by these other DNA damaging agents . To directly
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determine whether NF-KB activation by IR and VP16 was also cell cycle-dependent ,
CEMKB cells were sorted for GFP(+) populations at 6 hours following treatment wit h
these agents . Like TNFa, but unlike CPT (Figure 2D), the GFP(+) populations afte r
VP16 or IR exposure represented DNA contents representing each phase of the
cell cycle (Figure 2E, others not shown) . Examining the DNA contents of total cel l
populations before and 6 hours after treatments demonstrated that the difference s
seen between these GFP(+) populations were not due to overt differences in cell cycl e
progression within the assay period (see below) .

CEM cells exhibit an NF-KB-dependent G 2/M cell cycle arrest . Previou s
studies linking NF-KB activation with anti-apoptotic activities relied primarily on either
(i) increased apoptotic responses when N F-KB activation was prevented by th e
expression of a super-repressor IKBa mutant (20, 42, 43), knock-out of p65 (14, 15), o r
knock-out of IKK components (16, 17), or (ii) increased resistance to apoptosis whe n
cells were made to overexpress rel members of the NF-KB protein (44, 45) . To ou r
knowledge, there have not been studies that specifically examined the phenotypes of
NF-KB-activated cell populations without prior manipulations of the NF-KB activatio n
potentials . Thus, we treated CEMKB cells with IR and FACS sorted them based on th e
expression of GFP at different time points to examine the behavior of "GFP(+)" an d
"GFP(-)" populations . While both populations accumulated efficiently at the G 2/M cel l
cycle phase within 24 hours of exposure (Figure 3A), high percentages of GFP(+) cell s
remained in this cell cycle phase for up to 72 hours with little apoptosis. By 96 hours ,
some of these GFP(+) cells had re-entered the cell cycle as detected by the emergenc e
of G, and S-phase cells . In contrast, GFP(-) cells failed to remain in the G 2/M cell cycle
phase for a prolonged period of time and underwent nearly complete apoptosis withi n
96 hours . Importantly, these effects were not due to the expression of GFP per se ,
since GFP(+) cells following exposure to TNFa did not display the similar phenotyp e
(Supplemental Figure 1) .

To distinguish whether the maintenance of G 2/M arrest seen in GFP(+) cel l
populations was due to N F-KB activation or to some associated parallel events, w e
expressed the super-repressor IKBa mutant (S32/36A-IKBa) in CEM cells and isolated
stable clones that failed to efficiently activate NF-KB when stimulated with IR an d
VP16 (Figure 3B and others not shown) . Figure 3B shows NF-KB activity in thre e
different clones . CEM-S32/36A-23 displayed the greatest inhibition of N F-KB activit y
so this clone was utilized in further experiments . When these cells were stimulate d
with IR, cell populations displaying prolonged G 2/M arrest were no longer observe d
and correspondingly increased apoptosis was observed (Figure 3C) . These result s
indicated that the activation of NF-KB was necessary to maintain G 2/M arrest and protec t
CEM cells from apoptosis .

P21wa"ipl is induced in an NF-KB dependent manner following IR exposur e
primarily in S/G 2 cell cycle phases . Since NF-KB has been found to induce
antiapoptotic genes (4-8), it is possible that induction of such a gene could represen t
the mechanism for the maintenance of G 2/M arrest by directly preventing apoptotic
cell death of G 2/M arrested cells . Alternatively, it is possible that N F-KB induces a
gene product that directly modulates G2/M cell cycle arrest . We therefore screened
the expression of several antiapoptotic genes and cell cycle regulators followin g
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exposure of CEM and CEM S32/36A cells to IR by ribonuclease protection assay
(RPA) . We found that p2l waf,/ciP1 , an inhibitor of cyclin-dependent kinases (CDK), wa s
specifically induced in CEM, but not in CEM-S32/36A cells (Figure 4A) . In contrast ,
the antiapoptotic Bcl-XL gene was not induced (Figure 4A) . Since p2l wafl 'c'P' is best
characterized for its induction by p53 tumor suppressor in G 1 to cause a G 1 cell cycle
arrest, we wondered how NF-KB-dependent induction of p21 wa"'0 'P' was associated wit h
the observed G 2/M cell cycle arrest . This CDK inhibitor has been described to have a
role in the maintenance of G 2/M arrest (46) . Thus, we considered the possibility tha t
NF-KB induced p2l wafl 'c'P' in cell cycle phases other than G 1 to regulate G 2/M cell cycl e
arrest, even though NF-KB was activated in each phase of the cell cycle, includin g
the G 1 phase. To test this notion directly, we sorted G 1 cell populations by FACS
away from cells in S/G 2 phases based on the DNA content after 6 hours following I R
exposure . These cells were then analyzed for the expression of p2l wa"'oiP' mRNA by
RPA analysis . Surprisingly, the expression of p2l wafl /c'P' mRNA was concentrated i n
the S-G2/M population compared to the G 1 cells (Figure 4B) . It was also not induced
in CEM-S32/36A cells, confirming NF-KB dependence. Quantitative real-time PC R
demonstrated that the NF-KB-dependent induction of p21 W af /c'P' mRNA was also seen
with another DNA damaging agent, VP16 (Figure 4C) . Similar to the results seen wit h
IR, the expression of Bcl-XL was not induced in these cells even with VP16 treatmen t
(Figure 4C). Western blotting further confirmed that p2l waf"c'P' protein was indee d
induced in an NF-KB dependent fashion by both IR and VP16 as seen by the lac k
of p2lwaf'/co' protein induction in two different clones expressing the S32/36A super -
repressor IKBa mutant (Figure 4D, and data not shown) . Moreover, NF-KB-dependent
induction of p2lwaf,/ciPl was not limited to the CEM cell system and was also seen in p53 -
mutant MDA-MB-231 human breast cancer cells (Figure 4E and Supplemental Figur e
2) . Similar to CEM cells, these breast cancer cells also displayed the G 2/M checkpoint
maintenance phenotype upon IR exposure, which was reduced when NF-KB activation
was abrogated (Figure 4F) .

NF-KB induction of p2lwawciP1 contributes to G 2/M checkpoint maintenance .
To directly test whether NF-KB induction of p2l waf"c'P' was critical to regulate the G 2 /
M checkpoint maintenance in CEM and MDA-MB-231 cells, we selectively reduce d
p2l wafl/c'P' induction by the use of stable RNA interference . A p21 waf"c'P' specific RNA
interference pSilencer vector was cotransfected with a puromycin expression vector ,
and puromycin-resistant clones displaying reduced accumulation of p21 waf1c' P1 following
IR treatment were isolated (Figure 5A and 5C) . Both CEM and MDA-MB-231 cell s
showed a reduction in G 2/M checkpoint maintenance and an increase in apoptosi s
when p21 waf"c'P' expression was suppressed (Figures 5B and 5D) . The cell cycle
distribution of p2l waf"c'P' -silenced MDA-MB-231 cells was nearly identical to that see n
with those expressing S32/36A-IKBa (compare Figures 4F and 5D) . The effect of G2/M
checkpoint maintenance was modest in CEM cells, possibly due to incomplete silencin g
efficiency (Figure 5A) . These observations demonstrated that NF-KB dependent p2l Waft /

01P' induction indeed contributed to G 2/M checkpoint maintenance and survival of thes e
p53-mutant human cancer cell lines .

DISCUSSION
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The role of NF-KB as an apoptosis regulator provided a conceptual framework i n
which manipulation of NF-KB activity may serve as a drug target in different pathologica l
settings, including malignancy (3) . Currently, there are a number of anti-NF-KB drug s
being developed, primarily targeting the proteasome or IKK activity (47) . A commo n
experimental approach to demonstrate the role of NF-KB in cell survival employs th e
expression of super-repressor IKBa, or the use of NF-KB-deficient cells, such as p6 5
knockout mouse embryonic fibroblasts, to specifically attenuate NF-KB activity . In this
study, we developed an NF-KB reporter cell system to positively examine the behavio r
of NF-KB activated cells without prior manipulation of NF-KB activation potential . Thi s
system permitted the analysis of populational variations among drug-exposed cells wit h
respect to NF-KB activation, cell cycle regulation, and survival differences .

We found that activation of NF-KB occurred in different cell cycle phases followin g
stimulation with the DNA damaging agents, IR and VP16, with no overt bias toward a
specific cell cycle phase . Similar observations were also made with TNFa stimulation .
In contrast, in accordance with previous findings (20, 21), activation by CPT wa s
concentrated in the S-phase of the cell cycle. These findings provided some conceptua l
implications regarding the role of NF-KB in different cell cycle phases . In the case of
CPT, the data implied that NF-KB target genes are only induced in the S or later cel l
cycle phases depending on the kinetics of NF-KB-dependent target gene expressio n
and duration of NF-KB activation . In contrast, IR and VP16 treatments provide th e
opportunity for NF-KB to induce its target genes in different cell cycle phases, includin g
the G 1 phase, which may be the predominant cell cycle phase in tumor cells in vivo . It
was, however, unclear how different NF-KB target genes were regulated in different cel l
cycle phases . Our study demonstrated that the existence of genes that are regulate d
by NF-KB in a cell cycle-phase selective manner upon genotoxic stress insult . We found
that p21 waft'cipl was induced preferentially in cells enriched for S and G 2/M populations .
In this case, the coupling of p21 Waft/cipl gene expression to specific cell cycle phas e
(S and G 2, but not in G 1 ) was apparently critical, since these cells arrested in G 2/M
cell cycle phases to presumably prolong the opportunity to repair damaged DNA an d
eventual cell cycle re-entry in the face of DNA damage induction . Thus, these positive
selection studies revealed a previously unrecognized G2/M role for NF-KB to promote
cancer cell survival .

How does p21 wafl'cip1 manifest this G 2/M arrest phenotype? P21 wafl '°'p1 is best
characterized as a transcriptional target of p53 to act as a cell cycle inhibitor . Thus ,
in cells with a functional p53 tumor suppressor protein, this pathway causes cell cycl e
arrest primarily in the G1 phase of the cell cycle . P21 Waft/cipl is capable of interacting
with all of the Cdk complexes (48) and studies have also demonstrated that p53 ca n
regulate the expression of p21 wafl/cipt to block cells in the G 2 phase of the cell cycl e
(49). However, p53 is among the most frequently inactivated tumor suppressor gene s
in human cancer, and this inactivation is associated with increased resistance to
anticancer treatments (22-25) . Under p53-defective conditions, p21 wafl'cipl can still be
induced by other molecular pathways .

Studies have revealed that treatment of certain cell types with anti-cancer agents
leads to an accumulation of p21 Waft/cipl protein levels and a G2/M arrest (28, 46, 50 ,
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51) . Introduction of nonfunctional p21 waf'/ciPl or a p21 waf'/ciPl antisense oligonucleotid e
diminished the G 2/M arrest phenotype, similar to what we found with RNA interferenc e
studies in the present study . Also, studies with esophageal squamous cell carcinom a
lines have shown that IR induced p21waf1/ciP' and a G2 cell cycle arrest that could als o
be diminished when p2lwafl/ciP' expression was blocked by the introduction of p2l waf 1/ ciP l

antisense oligonucleotides (51) . Besides inhibiting CDK activity directly, interactio n
of p2lwaf'/ciPl with proliferating cell nuclear antigen was found to be critical for causin g
a G2 cell cycle arrest in the p53-deficient DLD1 colon cancer cells (46) . The results
from our current study suggest the possibility that NF-KB could play a role in p21waf1/c i P l

induction in these different p53-defective cancer cases . Moreover, the induction of
p2l waf'/ciP1 transcription might have also been linked to specific cell cycle phases (suc h
as S and G2) to coordinate G 2/M arrest . Thus, NF-KB activation by genotoxic agents i n
p53-defective cancer cells may be coupled to G 2/M arrest regulation in a considerabl e
number of human malignancies enhancing cancer resistance .

P21waf1/ciP' has also been implicated as a negative regulator of apoptosis in many
systems (52) . Disruption of p21 waf ' /c'P' following DNA damage switches the cellula r
outcome from cytostatic to apoptosis . During DNA damage-induced apoptosis, p21 is
cleaved by caspase 3 thereby releasing cells from the cell cycle block and increasin g
apoptosis in A549 human lung cancer cells (53) . Following daunorubicin treatment in
HCT116 colon cancer cells, the transcription factor myc is recruited to the p21 waft/ciP l

promoter by the DNA-binding protein Miz-1 thereby blocking p53 from activating p2l wan '
col transcription (54) .

Finally, p2lwaf1/ciP1 has been implicated in enhancing NF-KB dependent gene
expression through the modulation of p300 coactivator activity (55) . Thus, induction
of p21waf1/ciP' by NF-KB may create positive feedback stimulation of NF-KB dependen t
transcription in these cancer cells, further promoting their survival . Furthermore ,
HCT116 colon cancer cells stimulated with daunomycin induced NF-KB binding to a
putative KB binding site in the p21waf1/ciP' promoter (56), even though the phenotype
associated with this cell system was not determined . NF-KB has been shown to induce
MDM2 to reduce the expression of p53 in mouse embryonic fibroblasts and enhanc e
their survival (57) . It is also possible that under such condition, NF-KB may also induc e
p21waf1/ciP' to promote G 2/M checkpoint maintenance . Moreover, NF-KB activation b y
DNA damaging agents appeared to be highly variable with the presence of differen t
levels of cell populations that did not induce NF-KB-dependent GFP expression . Further
dissection of the mechanisms involved in both populational variation of the N F-K B
response and cell cycle-coupled induction of NF-KB target genes, including p2l waf,/6P ' ,

may provide further insight into understanding cell survival mechanisms provided by thi s
ubiquitous transcription factor .
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FIGURE LEGENDS

Figure 1 . DSB-inducing agents activate NF-KB in CEM human T cells . (A)
CEM cells were exposed to various doses of IR (1-40 Gy) and cells were collected 3
hours later. Total cell extracts were analyzed by EMSA using an IgK-KB probe . The
lower panel shows an EMSA using an Oct-1 probe for a loading control . (B) CEM cells
were exposed to 10 Gy of IR . Cell samples were terminated at indicated time points ,
and cell extracts were analyzed by EMSA as above (upper panel) or Western blottin g
with IKBa antibody (lower panel) . (C) CEM cells were treated with various genotoxi c
agents (10µM CPT, 20 µM TPT, 10 µM VP16, 25 µM doxorubicin, or by 20 Gy IR )
for 3 hours or TNFa (10 ng/ml) for 20 min . NF-KB and Oct-1 binding activities were
determined by EMSA as described above. (D) CEM cells were transiently transfecte d
with the 3xKB-Luc reporter plasmid . At 48 hours after transfection, cells were treate d
with TNFa, CPT, Dox, VP16 or IR at the same doses as used in (C) for 6 hours . Cel l
extracts were analyzed for luciferase activity and standardized to total protein . Error
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bars are SD of data obtained from three independent experiments .

Figure 2 . NF-KB activation by CPT but not IR and VP16, is cell cycle-dependent .
(A) CEMKB cells were treated with 10 ng/ml TNFa or 10 µM CPT for 24 hours . NF-KB
activation was visualized under fluorescein-aided fluorescent microscopy (right panels )
or phase-contrast microscopy (left panels) . (B) CEMKB cells were treated for 6 hours
with 10 ng/ml TNFa (upper panel) or 10 tM CPT (lower panel) . NF-KB activation was
determined by measuring GFP fluorescence on a flow cytometer . (C) CEMKB cells were
treated with 10 ng/ml TNFa for 24 hours . After treatment, GFP(+) cells were sorted fro m
GFP(-) cells by flow cytometry. Total cell extracts were analyzed by EMSA using an IgK-
KB probe . (C) CEMKB cells were treated for 6 hours with 10 ng/ml TNFa (upper panel )
or 10 µM CPT (lower panel) . NF-KB activation was determined by measuring GF P
fluorescence on a flow cytometer . (D) CEMKB cells were treated with 10 ng/ml TNFa o r
10 µM CPT for six hours . After treatment, GFP(+) cells were sorted from GFP(-) cells b y
flow cytometry . Cell cycle profiles were examined by PI staining and analyzed with th e
Cellquest and Modfit software . (E). CEMKB cells were treated with 10 µM VP16 for si x
hours and GFP(+) cells were sorted from GFP(-) cells by flow cytometry and analyze d
as in (D) . (F) CEM cells were pretreated with 25 µM aphidicolin for 30 min (denoted "+ "
and "-") followed by a 20 minute exposure to 10 ng/ml TNFa, or a 3 hour exposure to 1 0
µM CPT, 10 µM VP16, 2511M Dox, or 20 Gy IR . Cell extracts were analyzed for NF-K B
(upper panel) or Oct-1 (lower panel) by EMSA .

Figure 3. NF-KB-activated cells display a prolonged G 2/M cell cycle arrest
followed by cell cycle re-entry. (A) CEMKB cells were exposed to 10 Gy of IR and
allowed to repair for the times indicated . At each timepoint, CEMKB GFP(+) cells were
sorted from GFP(-) cells using the FacsVantage cell sorter. Cells were immediately
fixed with 70% ETON, followed by cell cycle analysis by PI staining and modeling as i n
Figure 2C . The cell cycle profiles for the total, GFP(+), and GFP(-) cell populations a t
different timepoints are indicated . (B) Different CEM-S32/36A clones were irradiate d
with a dose of 20 Gy for three hours and monitored for their ability to activate NF-KB .
The corresponding IKBa protein levels were determined by Western blot analysis ( *
denotes the exogenous superrepressor IKBa) . (C) CEM and CEM-S32/36A-23 cell s
were irradiated with a dose of 20 Gy and allowed to recover for the times indicated . Cel l
cycle profiles were determined as above .

Figure 4. Induction of p21wafl/cipl by NF-KB in S/G2 phases results in the
maintenace of a G 2/M cell cycle arrest in CEM and MDA-MB-231 cells .
(A) CEMKB and CEMS32/36A-23 cells were irradiated at a dose of 20 Gy . After six
hours, total RNA was analyzed by ribonuclease protection assays using the hStress- 1
template set. Only the sections of the films corresponding to the genes indicated ar e
shown . (B) CEMKB and CEM-S32/36A-23 cells were irradiated at a dose of 20 Gy .
After 5.5 hours of incubation, cells were labeled with Hoechst dye for 30 minutes befor e
sorting the G, cells from the S/G 2-enriched cells on the FACSvantage cell sorter . Tota l
RNA was prepared and ribonuclease protection assays were performed as above .
(C) CEM cells were exposed to 10 µM VP16 for six hours followed by quantification o f
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p21 wafl'cipl and Bcl-X L RNA expression levels using real time RT-PCR . (D) P21 wafl/cip l

protein induction was determined by IP-Western in both CEM and CEM-S32/36A clone s
after stimulation by 10 ng/ml TNFa (T) or 10 µM VP16 (V) for 3 hours . (E) MDA-MB -
231 and MDA-S32/36A-9 cells were treated with 20 Gy of IR for up to 72 hours . Tota l
cell extracts were prepared and Western analysis was done using the correspondin g
antibodies as shown . (F) MDA-MB-231 and MDA-S32/36A-9 cells were exposed to 20
Gy of IR for up to 72 hours. Cells were prepared as in Figure 3A and cell cycle profile s
were determined at every 24 hour interval .

Figure 5. NF-KB induction of p21waf1/cipl contributes to G 2/M checkpoin t
maintenance . (A) A pSilencer p21 waft/cip1 stable knockdown clone (clone 9) and a
control pSilencer scramble clone were tested for their ability to reduce p21 wafl/cip l

protein expression following 20 Gy of IR for six hours as above . (B) Statistical analysis
of 3 independent experiments showing that pSilencer-Scr cells depict a statisticall y
significant sigmoid curve, indicating that these cells are capable of maintaining a G 2/
M arrest . In contrast, pSilencer-p21-9 cells show a statistically significant quadrati c
polynomial curve, indicating the lack of G 2/M maintenance at the 48 hours time point .
(C) MDA-pSi-p21 cells were tested for their p21 waft/cip protein expression compared
to MDA-pSi-Scr control by Western blot analysis following treatment with 20 Gy of I R
at the indicated times . (D) MDA-pSi-Scr and MDA-pSi-p21 cells were treated with
20 Gy of IR . Cells were fixed at the indicated time points and cell cycle profiles wer e
determined as in Figure 3A .

Supplemental Figure 1 . NF-KB-activated cells treated with TNFa do not display a
G2/M arrest . CEMKB cells were exposed to 10 ng/ml TNFa and allowed to recover fo r
the times indicated . At each timepoint, CEMKB GFP(+) cells were sorted from GFP(- )
cells using the FACSVantage cell sorter . Cells were immediately fixed with 70% ETON ,
followed by cell cycle analysis by PI staining and modeling as in Figure 2C . The cel l
cycle profiles for the total, GFP(+), and GFP(-) cell populations at different timepoint s
are indicated .

Supplemental Figure 2. MDA-S32/36A clones were unable to induce NF-K B
activation following TNFa exposure . MDA-S32/36A clones were tested for thei r
ability to induce NF-KB following 15 min . of TNFa (10 ng/ml) stimulation by EMS A
(upper panel), Parallel samples were examined for IKBa protein levels by Western blo t
analysis (lower panel) .
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Figure 3
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Figure 5
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Supplement Figure 1
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I .

III .

	

Key Research Accomplishments and Conclusion s

1. NF-xB was able to bind to a putative NF-KB consensus site in the p21 wAF1/ciP '

promoter.

2. A clonal MDA breast cancer cell line and a CEM T leukemic cell line harborin g
the RNA interference vector specifically knocking down p21 .

3. Cell cycle profiles of MDA versus MDA pSilencer p21 knockdown cell line s
following treatment with 20 Gy of irradiation indicated that MDA cells display
a more abundant and prolonged G 2/M arrest than MDA pSilencer p21 cells ,
showing a dependence on p21 for the maintenance of the G 2/M arrest .

III .

	

Reportable Outcome s

1. Sequential modification of NEMO/IKKyby SUMO-1 and ubiquitin mediates NF -
KB activation by genotoxic stress . Huang IT, Wuerzberger-Davis SM, Wu ZH ,
Miyamoto S, Cell . 2003 Nov 26 ;115(5) :565-76 .

2. Enhanced cancer cell survival by NF-KB-dependent p21 Waft/ciP1 induction . Shelly
M. Wuerzberger-Davis, Pei-Yun Chang, and Shigeki Miyamoto (in submission) .

IV.

	

Shelly M. Wuerzberger-Davis completed her doctorate and graduated i n
Dec . 2004 .

V.

	

Conclusions

Task 1 : We have shown that there is a NF-KB dependent G 2/M cell cycle arrest
in MDA human breast cancer cells . We are currently working on determining th e
radioresistance of both cell lines, MDA and MDAS32/36A by colony forming assay s
along with MDA-pSil-Scr and MDA-pSil-p21 in order to see if there is a growt h
advantage in cells that maintain a prolonged G 2/M arrest .

Task 2 : We have shown that p21 wAF701P ' is a target of NF-KB through promoter analysi s
and electrophoretic mobility shift assays . Through the use of stable RNA interference ,
we were able to show that loss of p21 wAF1/ciP1 does correlate with a reduction in the
G2/M cell cycle arrest as does loss of NF-KB activation . However, this reduction i s
only partial . One reason may be due to the fact that the knockdown produced by th e
pSilencer vectors is not complete, moreover, we do not believe that p21 `" AF"ci P' is the
only gene involved . We are currently preparing RNA to due affimetrix chip analysi s
(subtask (c)) . We will be looking for differences in gene induction following VP1 6
treatment between parental cells and those transfected with the super-repressor S32 /
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36A-IKBU construct .
Breast cancer is one of the most common forms of cancer among women .

Efficacious treatment of breast cancer patients is one of the most urgent goals . While
current treatment regimens are effective, some cancer cells escape the death inducin g
effects of anticancer treatments . Activation of the transcription factor NF-KB has bee n
implicated as one mechanism contributing to cancer resistance . However, mechanism s
by which NF-KB contributes to cancer resistance are not well understood . We have
obtained evidence that NF-KB activation by irradiation can cause a prolonged G 2/M cel l
cycle arrest in the human breast cancer cell line, MDA-MB-231 . The elucidation of the
mechanisms involved in cell cycle regulation by NF-KB after DNA damage will help u s
not only better understand how to increase the efficacy of breast tumor treatments, bu t
also lead to the identification of a novel gene, such as p21 Waft/cipt, whose protein product
may prove to be a better target for breast cancer therapy .
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